Dendrites in Batteries

WIKI BATTERY ENERGY STORAGE & BATTERIES​

Lithium Dendrite-Grow-in-Batteries

Lithium-dendrites in rechargeable lithium-metal batteries

Research pays much attention to the properties of the separator material through which the lithium metal penetrates. The most common idea to solve the lithium-dendrite problem is to form a mechanical barrier that would stop metallic dendrites from growing into the counter electrode.

Lithium-Dendrites
Lithium-Dendrites

Lithium-dendrites formed by inhomogeneous deposition of lithium to the current collector causes short-circuit risks and capacity loss for batteries. Dendrite penetration through battery separators and various solid-electrolytes is a key challenge facing a next generation of extreme-high energy-density batteries.

However, the picture of mechanical dendrite barrier is a naïve concept. Mechanical strain may equally built-up and mechanically stress the cell. A concept to solve the dendrite problem beyond a simple mechanical “hard” barrier is like winning the 150-year-old metal-dendrite game. [1]

Dendrite-Whisker-Lithium-WikiBattery-Wiki-Battery
Dendrite Grow toward the cathode

Why do dendrites grow in lithium-batteries?

Lithium-Dendrite-Formation
Lithium-Dendrite-Formation

The mechanism and formation of dendrites is not yet fully understood. A very detailed analysis of the formation of dendrites in lithium-ion batteries has recently been reported.

Until recently, it was not known by theory why metals such as lithium or zinc form dendrites at the anode during charging, while silver or copper do not build dendrites. Researchers see an explanation for dendrite formation: potentials below the charge zero point. DFT calculations suggest that every metal has a so-called charge zero point. 

If the metal is deposited at potentials below this charge zero – i.e., at a negatively charged electrode – the crystal-like dendrites are formed. During deposition, small irregularities like bulges keep forming on the surface. 

Dendrites-in-Batteries
Dendrites-in-Batteries

Following the laws of electrostatics, the negative charge concentrates on the tips of such clusters and attracts the positively charged lithium ions. Thus, these peaks continue to grow and eventually form dendrites.

In metals such as copper or silver, the surface is positively charged during deposition. “If a small bulge forms on the surface there, a positive charge accumulates. This repels the positively charged metal ions, and the cluster cannot continue to grow and form dendrites.[2]

References

  1. Vonlanthen, David., Dendrites in lithium metal batteries – Introduction & Concepts. 2023 
  2. Santos, E. and W. Schmickler, The Crucial Role of Local Excess Charges in Dendrite Growth on Lithium Electrodes. Angewandte Chemie International Edition, 2021. 60 (11): p. 5876-5881.
  3.  Chen-Zi Zhao, Xin-Bing Chen, Rui Zhang, Qiang Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chem. Rev.2017, 117, 15, 10403–10473.
  4. Feng Wu et al., Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes, Energy Storage Materials, Volume 15, November 2018, Pages 148-170.

  5. Qitao Shi et al. Recent developments in current collectors for lithium metal anodesMater. Chem. Front., 2023,7, 1298-1311

Picture of David Vonlanthen, PhD

David Vonlanthen, PhD

Editor

Suchkonsole

CurRent Articles

circular-economy-logo
balance sheet

Circular Economy, Recycling of Batteries and Product Lifetime

Circular economy, trade in Li-ion batteries waste will remain essential in markets where economically viable recycling can take place. Promoting circular economy and value chains for Li-ion batteries require clear rules on the waste status, transport, storage, safety regulations, trade facilitation, standards for battery design, product lifetime, and regulatory targets for waste collection and recycling rates.

Read More »
Inorganic Solid-State Electrolytes
Australia

Inorganic Solid-State Electrolytes

Inorganic Solid-State Electrolytes WIKI BATTERY – ENERGY STORAGE & BATTERIES WIKI BATTERY WIKIBATTERY.ORG – BATTERIEN & ENERGIESPEICHER Inorganic Solid-State Electrolytes for Solid-State lithium Batteries Inorganic Solid-State Electrolytes Introduction The concept

Read More »
Lieferkettern-Supply-Chains-Lithium-Ionen-Batterien

Battery Supply Chains

Battery Supply Chains Wiki battery – Energy storage & batteries WIKI BATTERY WIKIBATTERY.ORG – BATTERIEN & ENERGIESPEICHER Diversified battery supply chains based on a sophisticated circular economy strategy will become

Read More »

WIKIBATTERY.ORG

Wiki Battery is an encyclopedia for battery technologies, which explains technical terms from the field of batteries and energy storage in a simple and understandable way – dummy proof.

More information about Wiki Battery can be found hereWiki Battery is a published Swiss Battery (SwissBattery.com).

All rights reserved.

Copyright © 2023-2030 by WikiBattery.org

Lithium Dendrite-Grow-in-Batteries

Newsletter

Want updates on everything we do? Sign up for the quarterly newsletter.

Diese Seite ist urheberrechtlich geschützt © 2023-2033 – www.WikiBattery.org – Datenschutzbestimmungen Nutzungsbedingungen